
JIM MANICO Secure Coding Instructor www.manicode.com

Java 9
Security Enhancements

Creative Commons MANICODE SECURITY

A little background dirt…

jim@manicode.com

@manicode

§ Former OWASP Global Board Member

§ Project manager of the
OWASP Cheat Sheet Series and
several other OWASP projects

§ 20+ years of software
development experience

§ Author of "Iron-Clad Java,
Building Secure Web Applications”
from McGraw-Hill/Oracle-Press

§ Kauai, Hawaii Resident

2

Creative Commons MANICODE SECURITY

Java 9 Security JEP's

3

Creative Commons MANICODE SECURITY

Java 9 Security Enhancements

§ There are a plethora of security related JEPs for JDK 9:

219: Datagram Transport Layer Security (DTLS)
229: Create PKCS12 Keystores by Default
232: Improve Secure Application Performance
244: TLS ALPN Extension
246: Leverage CPU Instructions for GHASH and RSA
249: OCSP Stapling for TLS
273: DRBG-Based SecureRandom Implementations
287: Support SHA-3 Hash Algorithms
288: Disable SHA-1 Certificates
290: Filter Incoming Serialization Data

4

Creative Commons MANICODE SECURITY

JEP 219
DTLS

5

Creative Commons MANICODE SECURITY

JEP 219
Datagram Transport Layer Security (DTLS)

http://openjdk.java.net/jeps/219

§TLS is not sufficient for a variety of datagram apps
§Datagram applications still need transport security!
§JEP 219 defines an API for Datagram Transport

Layer Security (DTLS) version 1.0 (RFC 4347) and
1.2 (RFC 6347)

§Concise implementation that is transport-
independent and similar to javax.net.ssl.SSLEngine

6

http://openjdk.java.net/jeps/219

Creative Commons MANICODE SECURITY

JEP 244
ALPN

7

Creative Commons MANICODE SECURITY

JEP 244
TLS Application-Layer Protocol Negotiation Extension

http://openjdk.java.net/jeps/244

§JEP 244 extends javax.net.ssl package to support
the TLS Application Layer Protocol Negotiation
(ALPN) Extension

§When different protocols are supported on the same
TCP or UDP port, ALPN allows a negotiation to
determine which protocol will be used with a TLS
connection

§An important consumer of this enhancement is the
HTTP/2 client (JEP 110)

8

http://openjdk.java.net/jeps/244
http://www.rfc-editor.org/rfc/rfc7301.txt

Creative Commons MANICODE SECURITY

JEP 249
OCSP Stapling

9

Creative Commons MANICODE SECURITY

JEP 249
OCSP Stapling for TLS

http://openjdk.java.net/jeps/249

§ JEP 249 implements OCSP Stapling for TLS clients
§ Revocation (in general) does not work well

10

It takes at least 10 days for the revocation Information to fully propagate

Browser soft fail policy makes revocation ineffective

Some OCSP request can be intercepted

Most browsers ignore revocation for all certificates but EV certificates

http://openjdk.java.net/jeps/249

Creative Commons MANICODE SECURITY

Online Certificate Status Protocol (OCSP)
An alternative to certificate lists (CRL)

11

Cert
Auth

Web
Server

App Talks to Server

Port 80 to
OCSP: Request

status for
webserver

Port 80 to
Client: Status
OK. Signed by

OCSP
Responder

No
Privacy

OCSP
Responder

Creative Commons MANICODE SECURITY

Attacks against OCSP

12

OCSP
Responder

Web
Server

App Talks to Server

Port 80 to
OCSP: Request

status for
webserver

MitM

Port 80 to
Client: Status
OK. Signed by

OCSP
Responder

Does the usual…
Not shown here
for simplicity sake.

Cert
Auth

Creative Commons MANICODE SECURITY

OCSP Stapling Faster, safer and more private

13

C
ac

he
s

O
C

S
P

 d
at

a
an

d

st
ap

le
s

in
 c

er
t r

es
po

ns
e

Web
Server

App Talks to Server
Po

rt
80

OCSP
Responder

Does the usual…
Not shown here
for simplicity sake.

Cert
Auth

Creative Commons MANICODE SECURITY

JEP 273
DRBG

14

Creative Commons MANICODE SECURITY

JEP 273
Deterministic Random Bit Generator (DRBG)

http://openjdk.java.net/jeps/273

§NIST 800-90Ar1 defines three DRBGs: Hash_DRBG,
HMAC_DRBG and CTR_DRBG.

§ These new DRBG's use strong modern algorithms such as
SHA-512 and AES-256.

§API changes
– New SecureRandom methods specifying additional input in the course of

seeding, reseeding, and random-bit generation.
– New methods in SecureRandomSpi, to implement the new methods

above.
– A new SecureRandomParameters interface so that additional input can

be provided to the new SecureRandom methods.
– A new DrbgParameters class (and its inner classes)

implementing SecureRandomParameters to be used by DRBG.

15

http://openjdk.java.net/jeps/273

Creative Commons MANICODE SECURITY

JEP 287
SHA-3

16

Creative Commons MANICODE SECURITY

JEP 287
SHA-3 Implementation

http://openjdk.java.net/jeps/287

§ FIPS 202 defines four new hash functions: SHA3-224, SHA3-
256, SHA3-384, and SHA3-512. These can be implemented
as new algorithms of the java.security.MessageDigest API
under the standard names "SHA3-224", "SHA3-256", "SHA3-
384", and "SHA3-512".

§No new APIs are necessary, since there are no new
parameters required.

§Here is the list of providers and the corresponding
algorithm enhancements:
– "SUN" provider: SHA3-224, SHA3-256, SHA3-384, and SHA3-512
– "OracleUcrypto" provider: SHA-3 digests supported by Solaris 12.0

17

http://openjdk.java.net/jeps/287

Creative Commons MANICODE SECURITY

JEP 288
Disable SHA-1 Certificates

18

Creative Commons MANICODE SECURITY

TLS Benefits

19

Confidentiality Spy cannot view your data

Integrity Spy cannot change your data

Authenticity Server you are visiting is the right one,
backed up by the Certificate Authority System

Creative Commons MANICODE SECURITY

TLS Certificates

20

TLS uses X.509 Certificates

TLS certificates from certificate authorities help websites prove their
authenticity. These certificates contain:

Used to authenticate the other party

NOT used to help negotiate a symmetric key (beyond
authentication)

§ The certificate holder

§ The domain that the certificate was issued to

§ The signature of the Certificate Authority who verified the
certificate

Creative Commons MANICODE SECURITY

JEP 288
Disable SHA-1 Certificates

http://openjdk.java.net/jeps/288

§Disable X.509 certificate chains with SHA-1 based digital
signatures.

§ "SHA-1 should no longer be used to apply digital signatures
to data"
– http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf

– NIST Recommendation for Key Management, Part 1: General

§ "CAs MAY continue to sign certificates to verify OCSP
responses using SHA1 until January 1, 2017"
– v1.3 of the CA/Browser Forum Baseline Requirements (Section 7.1.3)

– https://cabforum.org/documents/#Baseline-Requirements

21

http://openjdk.java.net/jeps/288
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf
https://cabforum.org/documents/

Creative Commons MANICODE SECURITY

SHA-1 and the Urgency to Move On
§ In 2005, cryptographers proved that SHA-1 could be cracked 2,000

times faster than predicted.
§ At one point 90% of websites used SHA-1 to protect themselves from

being impersonated. That number is now below 4%.
§ As long as browsers need to support SHA-1 for someone, anyone's

certificate can be forged because browsers will not know there is a
good cert that uses something better

22

Year Cost (In US$) Cost Within Reach For

2012 2,770,000 Government, large corporations

2016 700,000 Medium size institutions

2018 173,000 Organized crime

2021 43,000 University research

Creative Commons MANICODE SECURITY

The Death of SHA-1 according to Google

23

Chrome
Version Date UI Changes Behavior

39 Sept 2014 Certs that expire in Jan 2017
using SHA-1 or mixed content

40 Nov 2014
Certs that expire between
1 June 2016 to 31 Dec 2016
using SHA-1 in the chain

41 Q1 2016 Certs that expire on or after
1 Jan 2017

Source: http://googleonlinesecurity.blogspot.com/2014/09/gradually-sunsetting-sha-1.html

Creative Commons MANICODE SECURITY

The Death of SHA-1 according to Mozilla

§Show the “Untrusted Connection” error whenever
a publically issued SHA-1 certificate issued
after January 1, 2016, is encountered in Firefox.
– Locally installed authorities (like MITM proxy tools) are NOT subject

to this rule.

§Firefox will show the "Untrusted Connection" error
message for all SHA-1-based certificates
after January 2017.

§https://www.fxsitecompat.com/en-
CA/docs/2015/sha-1-based-certificates-with-
validity-period-from-2016-will-not-be-validated/

24

https://www.fxsitecompat.com/en-CA/docs/2015/sha-1-based-certificates-with-validity-period-from-2016-will-not-be-validated/

Creative Commons MANICODE SECURITY

https://shaaaaaaaaaaaaa.com/

25

Creative Commons MANICODE SECURITY

SHA1 Collisions No Longer Theoretical
February, 2017

26

Creative Commons MANICODE SECURITY

Disable SHA-1 TLS Server Certificates in Java
July 18, 2017

Disabled SHA-1 in TLS Server
certificate chains anchored by
roots included by default in
Oracle's JDK; local or
enterprise CAs are not effected

2017-07-18 Released Java 9, 8u141
b15, 7u151 b15, 6u151 b15, R28.3.15

•2017-05-02 Target date changed from
2017-10-17 to 2017-07-18.

•2017-03-06 Target date changed from
2017-04-18 to 2017-10-17. Narrowed
scope from all SHA-1 usage: only TLS
will be affected, code signing will not be
affected at this time.

•2016-08-18 Announced

Creative Commons MANICODE SECURITY

Crypto Note

§ If Crypto API's are important to you over time, please keep an eye on
the Java Cryptographic Roadmap

§ This will help you keep an eye on planned changes in the Oracle
JRE/JDK

§ http://www.java.com/cryptoroadmap/

§ Also consider 3rd party libraries that help developers make better
cryptography API choices.
– Google KeyCzar (Old School and Battle Hardened)

– Google TINK (New and Shiny)

– LibSodium (Best of Breed, Required Native APIs)

28

http://www.java.com/cryptoroadmap/

Creative Commons MANICODE SECURITY

Deprecation

29

Creative Commons MANICODE SECURITY

Web Plugin Deprecated in Java 9

§The Java Web Plugin will be deprecated in Java 9.
– https://blogs.oracle.com/java-platform-

group/entry/moving_to_a_plugin_free

§ It will still be there but will go away fully in a later
version.

§Start moving to Java Web Start or javapackager.
§FUN FACT: Stuart Marks aka Dr. Depreciator is a

member of the JDK team. See JEP 277
– https://twitter.com/DrDeprecator

§ java.corba is also deprecated in Java 9

30

https://blogs.oracle.com/java-platform-group/entry/moving_to_a_plugin_free
https://twitter.com/DrDeprecator

Creative Commons MANICODE SECURITY

Here's a few for the
Java Security Analysis Tool Geeks

31

Creative Commons MANICODE SECURITY

Analyzing Java for Security

§A variety of JEP's In Java 9 will help security tool vendors
analyze Java for security in more effective ways.

§ JEP-236: Parser API for Nashorn (ECMAScript AST)
– https://blogs.oracle.com/java-platform-

group/entry/nashorn_the_rhino_in_the

– Delivered in Java 9

§ JEP-243: Java-Level JVM Compiler Interface
– http://openjdk.java.net/jeps/243
– Delivered in Java 9

§ JEP-190: Pluggable Static Analyzers
– http://openjdk.java.net/jeps/190
– Still in draft status

32

https://blogs.oracle.com/java-platform-group/entry/nashorn_the_rhino_in_the
http://openjdk.java.net/jeps/243
http://openjdk.java.net/jeps/190

Creative Commons MANICODE SECURITY

JEP 200
Java Modularity

33

Creative Commons MANICODE SECURITY

Why Reduce JRE Attack Surface?

§Asset: My application / runtime.
§Threat: Unknown future risk.
§Mitigation: Remove unused pieces.
§How: Compact Profiles (JDK 8) and Jigsaw (JDK 9)
§Difficulty: Removing things that you really do need will

break your program.

34

Creative Commons MANICODE SECURITY

Server JRE Attack Surface Reduction

• Server JRE decreases attack
surface by not including
applets since 2013!

35

Creative Commons MANICODE SECURITY

Savings from modularization in Java 8

§ JDK 8 (embedded):
§ Regular JRE: About 163MB.
–Compact 3: Remove graphics, CORBA, and

sound. About 21MB.
–Compact 2: No Kerberos and JMX monitoring.

About 15MB.
–Compact 1: No JDBC and XML. About 11MB.

36

Creative Commons MANICODE SECURITY 37

§ Reliable configuration to replace the classpath mechanism
with a means for program components to declare
dependences

§ Strong encapsulation to allow a component to declare
which of its public types are accessible to other components

§ Decreases program size

§ Reduces the attack surface by removing unused features

§ http://cr.openjdk.java.net/~mr/jigsaw/ea/module-summary.html
describes 72 epic levels of modularity.

JEP 200
Java 9 Modularity (Jigsaw)

http://openjdk.java.net/jeps/200

http://cr.openjdk.java.net/~mr/jigsaw/ea/module-summary.html
http://openjdk.java.net/jeps/200

Creative Commons MANICODE SECURITY

JEP 290
Filter Incoming Serialization Data

38

Creative Commons MANICODE SECURITY

Deserialization of Untrusted Data is Bad

§ 2016 was the year of Java Deserialization

apocalypse

– Known vector since 2011 which allows RCE!

– Previous lack of good RCE gadgets in common libraries

– Apache Commons-Collections Gadget caught many off-

guard

§ Solution?

• Stop deserializing untrusted data
• Use a secure JSON/XML serializer instead

39

Creative Commons MANICODE SECURITY 40

§ Allow incoming streams of object-serialization data to
be filtered in order to improve security.

§ Provide metrics to the filter for graph size and
complexity during deserialization to validate normal
graph behaviors.

§ Provide a mechanism for RMI-exported objects to
validate the classes expected in invocations.

§ Define a global filter that can be configured by
properties or a configuration file.

JEP 290
Filter Incoming Serialization Data
http://openjdk.java.net/jeps/290

http://openjdk.java.net/jeps/290

Creative Commons MANICODE SECURITY 41

§ Filter methods are called during
deserialization

§ Validates classes before deserialization

§ Validates array sizes

§ Establish deserialization limits

§ Filter may reject or be undecided

ObjectInputFilter Interface

Creative Commons MANICODE SECURITY

Creative Commons MANICODE SECURITY 43

§ Process-wide Filters
§ Custom Filters
§ Built-in Filters

Java 9 Filters

Creative Commons MANICODE SECURITY 44

Java 9 adds additional methods to
ObjectInputStream to set and get the current filter

public class ObjectInputStream ... {

public final void
setObjectInputFilter(ObjectInputFilter filter);

public final ObjectInputFilter
getObjectInputFilter(ObjectInputFilter filter);
}
If no filter is set for an ObjectInputStream then the
global filter is used, if any

Creative Commons MANICODE SECURITY 45

Process Wide Filters

Properties props = System.getProperties();
props.setProperty("jdk.serialFilter",
"Bicycle;!*;maxdepth=1;maxrefs=1;maxbytes=78;
maxarray=10");

• maxdepth maximum graph depth
• maxrefs maximum number of internal references
• maxbytes maximum input stream size
• maxarray maximum array length allowed

Creative Commons MANICODE SECURITY 46

Process Wide Filters

Properties props = System.getProperties();
props.setProperty("jdk.serialFilter",
"Bicycle;!*;maxdepth=1;maxrefs=1;maxbytes=78;
maxarray=10");

deserializes objects where the class name equals
ser05j.Bicycle and rejects all other classes

Creative Commons MANICODE SECURITY 47

Custom Filters

class BikeFilter implements ObjectInputFilter {
private long maxStreamBytes = 78; // Maximum bytes in the stream.
private long maxDepth = 1; // Maximum depth of the graph allowed.
private long maxReferences = 1; // Maximum # of references in a graph.

@Override
public Status checkInput(FilterInfo filterInfo) {

Custom filters are created by implementing the
ObjectInputFilter interface and overriding the
check- Input method.

Creative Commons MANICODE SECURITY 48

Built in Filters

• RMI Registry and Distributed Garbage
Collection (DGC) use JEP 290 Serialization
Filtering to improve service security and
robustness.

• RMI Registry and DGC implement built-in
whitelist filters for the typical classes expected
to be used with each service.

Creative Commons MANICODE SECURITY

Creative Commons MANICODE SECURITY 50

Deserialization and DOS

Properties props = System.getProperties();
props.setProperty("jdk.serialFilter",
"Bicycle;!*;maxdepth=1;maxrefs=1;maxbytes=78;
maxarray=10");

• Effectively prevents the SerialDOS exploit
• Vulnverable to generic heap DoS inside

ObjectInputStream; heap DoS us-
ing nested Object[], ArrayList, and HashMap;
collision attacks on Hashtable; and collision
attacks on HashMap (Oracle Java 1.7)

Creative Commons MANICODE SECURITY 51

JEP 290 is available
in Java 9, Java 8
update 121, Java 7
update 131, and Java
6 update 141

Creative Commons MANICODE SECURITY 52

Remember?

Creative Commons MANICODE SECURITY

THE HORROR IS NOT OVER

53

Creative Commons MANICODE SECURITY

It's all about the little things

54

Creative Commons MANICODE SECURITY 55

“You need to let the little things that
would ordinarily bore you suddenly thrill
you.”
― Andy Warhol

Creative Commons MANICODE SECURITY

The Little Things are Bigger Than They Appear

§ Much of the real work that has a big impact
is seeming boring stuff
§ Take a look a the work from Joe Darcy
–Cleaned up thousands of bad lint warnings in the

JDK
–Done by @SuppressWarnings or actually fixing the

code
–https://blogs.oracle.com/darcy/entry/warnings_remo

val_advice
§ A little irrational exuberance goes a long way

56

https://blogs.oracle.com/darcy/entry/warnings_removal_advice

Creative Commons MANICODE SECURITY

Conclusion

57

Creative Commons MANICODE SECURITY

A BIG DUKE THANK YOU TO...

Sean Mullan
• Technical lead and

architect of Oracle's Java
Security Libraries team.

• Lead of OpenJDK
Security Group

58

Creative Commons MANICODE SECURITY

What can you do?

§ Create JEP's for enhancements you would like to

see in the JDK.

§ Support existing JEP's you wish to see pushed

live with comments, support and code!

§ Check out the Quality Outreach Campaign
which helps open source groups handle feedback

§ https://wiki.openjdk.java.net/display/quality/Quality+Outreach

59

https://wiki.openjdk.java.net/display/quality/Quality+Outreach

JIM MANICO Secure Coding Instructor www.manicode.com

A hui ho, Java Ohana!
jim@manicode.com

